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Abstract
We present a new ultradiscretization approach which can be applied to discrete
systems, the solutions of which are not positive definite. This was made
possible, thanks to an ansatz involving the hyperbolic-sine function. We apply
this new procedure to simple mappings. For the linear and homographic
mappings, we obtain ultradiscrete forms and explicitly construct their solutions.
Two discrete Painlevé II equations are also analysed and ultradiscretized. We
show how to construct the ultradiscrete analogues of their rational and Airy-type
solutions.

PACS number: 05.45.−a

1. Introduction

Constructing generalized cellular automata from discrete systems is a procedure that has
become systematic and straightforward, thanks to the ultradiscretization approach [1]. Starting
from a given nonlinear discrete system one can, by applying the appropriate limit, obtain a
piecewise linear system, which manages to preserve the essential properties of the initial one.
Most notable among the latter are the characteristics of integrability (conserved quantities,
coherent structures etc.) and thus one can confidently claim that the ultradiscretization
procedure preserves integrability.

The way ultradiscretization works is by a change of variables and a subsequent limit.
Starting from the variable x, we introduce a new one X through

x = eX/ε (1.1)

where ε is a parameter, and then we take the limit of the expressions involved when ε → +0.
As a result, the multiplications and additions that appear in the discrete equation involving the
variable x are replaced by additions and max-functions operating on the variables X. The latter
is the consequence of the well-known result
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lim
ε→+0

ε log(eA/ε + eB/ε) = max(A,B). (1.2)

A few remarks are in order here:

(1) The ultradiscretization procedure as described here concerns rational expressions. Thus,
if we have a non-rational equation, such as the sine-Gordon, we must first convert it to a
rational form [2, 3].

(2) Since the result of the ultradiscretization is an equation involving only additions and max-
functions, it is clear that if all parameters and initial conditions are integer, the solution
will remain integer throughout [1].

(3) For the ultradiscretization to be applicable, the variables and the parameters of the initial
system must take only positive values (otherwise (1.1) would not have a sense in the real
domain).

The positivity requirement is a serious constraint, which limits the class of equations that
can be studied by the ultradiscretization approach. Despite this restriction, a great number
of interesting nonlinear systems are amenable to this treatment, as can be inferred from the
abundant existing literature [3–8].

Still, the positivity constraint has been a serious obstacle to the extension of the
ultradiscretization approach. In an attempt to overcome this difficulty, a different kind of
ultradiscretization ansatz has been recently proposed, which can be equally applied to positive
or negative variables [9]. Instead of (1.1), we introduce an ansatz involving the hyperbolic
sine,

x = sinh
X

ε
(1.3)

and then take the limit ε → +0. Clearly, for (1.3) to be applicable, the variable x does not have
to be positive definite. In what follows, in order to distinguish between the two approaches,
we shall refer to the one involving the exponential function as the e-ultradiscretization and the
new one, based on the hyperbolic sine, as s-ultradiscretization.

For practical applications, the s-ultradiscretization can be obtained in a simple way by
noting that 2 sinh(X/ε) = exp(X/ε) − exp(−X/ε). As a matter of fact, the factor 2 which is
introduced due to the definition of the hyperbolic sine can be omitted. This amounts to using

x = eX/ε − e−X/ε (1.4)

instead of (1.3). Given this expression, it is straightforward to obtain the s-ultradiscrete limit
of a given discrete equation.

Two points must be stressed here.

(1) Since the ansatz (1.4) is not monomial as in the case of (1.3), it is advised to convert all
equations to polynomial form (by multiplying out the denominators) before applying the
procedure. The consequence of this is that one often obtains equations which are implicit
for the dependent variable.
Another difficulty might have stemmed from constants or independent variables which,
though positive, are smaller than 1. In that case, introducing an ansatz involving a negative
exponent would have been inconsistent. However, we can consider the inverse of this
quantity, which is larger than 1, and introduce an ansatz with a positive exponent. For
instance, if a < 1, we write a = 1/eA/ε . Next, we multiply out the denominator and
then apply the limit ε → 0. However, this is not really necessary. In fact, proceeding as
described and then subtracting A from both sides of the equation is equivalent to having
written a = e−A/ε in the first place, in which case the contribution would have been −A.
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(2) A fundamental difficulty exists with the sinh transform. Let us assume that the variable x
is expanded in terms of e−1/ε as

x = eA/ε

∞∑
k=0

ck e−k/ε . (1.5)

Then, the inversion of (1.3) leads to

X = lim
ε→+0

ε arcsinh x = sgn(c0) max(0, A) (1.6)

i.e. only the dominant term gives a contribution. However, it may turn out that, when
computing x, the actual value of A is smaller than the expected one, i.e. c0 vanishes
through cancellations. Then the result of the inversion of (1.3) will be X =
sgn

(
ck0

)
max(0, A − k0), where k0 corresponds to the first nonvanishing subdominant

contribution. But there is no way a priori to know which is the first non-zero subdominant
term, unless we have full knowledge of x (which is, in principle, given by the solution of
a discrete equation). Thus, the s-ultradiscretization has by construction indeterminacies,
which are due to the vanishing of the dominant contribution. In the applications, we shall
consider in the following, we will discuss the appearance of such indeterminacies which
obviously appear only at specific points of the evolution.
The equivalent of identity (1.2) in the case of an s-ultradiscretization can also be easily
given (and we are going to assume here that the dominant contribution does exist). Starting
from

eX/ε − e−X/ε = σα eA/ε + σβ eB/ε (1.7)

(where σ 2
α = σ 2

β = 1) we find that

X = σm max(A,B, 0) (1.8)

where σm is σα, σβ or unity depending on which term is maximal. The extension of this
identity to N terms is straightforward.

In this paper, we will examine simple one-dimensional discrete systems, derive their
ultradiscrete form and obtain their solution. The systems we are going to focus on are linear
mappings, discrete Riccati equations and discrete Painlevé equations. In all cases, we shall
provide the e-ultradiscrete forms of the systems and their solutions as well as the s-ultradiscrete
ones. The latter is of interest, of course, whenever the solution is not positive definite.

2. The linear mapping

In order to investigate the s- versus e-ultradiscretization approach, we will begin with the study
of a very simple system: a first-order linear mapping. We start from

xn+1 = axn + b. (2.1)

When a and b are functions of n, the solution of (2.1) can be given in a formal way, involving
products and sums. While it is still possible to apply the ultradiscretization procedures to the
equation and its solution, the result remains quite formal. Thus, in order to have an explicit
example, we shall work with constant a and b. In this case, the solution to (2.1) can be simply
written as

xn = x0a
n +

b

a − 1
(an − 1). (2.2)
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If we assume that a, b are positive, it is possible to perform the e-ultradiscretization of (2.1).
We put x = eX/ε, a = eA/ε, b = eB/ε whereupon (2.1) becomes, at the limit ε → +0

Xn+1 = max(A + Xn,B). (2.3)

The solution of (2.3) can be computed very easily,

Xn =
{
nA + max(X0, B − A), if A > 0
nA + max(X0, B − nA), otherwise.

(2.4)

The same result can be obtained from the e-ultradiscretization of (2.2). Substituting the
expressions for x, a, b and taking the limit ε → 0, we obtain

Xn = max(X0 + nA,B + (n − 1) max(A, 0)) (2.5)

which is identical to (2.4).
We now turn to the case of an s-ultradiscretization. Clearly, the variable x must take

negative values for this case to be interesting, and we choose

xn+1 = −axn + b (2.6)

where a, b are positive, and a minus sign has been explicitly introduced. (Other sign
contributions would have been possible but their treatment is analogous to that of (2.6)).
Since a, b are positive, the ansatz we shall use is a = eA/ε, b = eB/ε , even though A and B
may be negative as explained in the introduction. However, for the variable x, we introduce
x = eX/ε − e−X/ε . Substituting into (2.6), we have

eXn+1/ε − e−Xn+1/ε = −eA/ε(eXn/ε − e−Xn/ε) + eB/ε. (2.7)

In order to apply the identity (1.2), we must have sums of exponential terms. Thus, we collect
the terms with the same sign of the equality and take the limit ε → 0. We obtain thus:

max(Xn+1, A + Xn) = max(−Xn+1, A − Xn,B). (2.8)

For the solutions of (2.8), we start from the discrete solution of (2.6) which is

xn = b

a + 1
+ (−1)nan

(
x0 − b

a + 1

)
. (2.9)

We substitute the appropriate expressions for a, b, x and find

for A � 0:

eXn/ε − e−Xn/ε ∼ e(B−A)/ε + (−1)n enA/ε(eX0/ε − e−X0/ε − e(B−A)/ε) (2.10a)

for A < 0:

eXn/ε − e−Xn/ε ∼ eB/ε + (−1)n enA/ε(eX0/ε − e−X0/ε − eB/ε). (2.10b)

In order to extract X from (2.10), we shall use identity (1.7).
We find readily from (2.10), assuming n > 0,

for A � 0:

eXn/ε − e−Xn/ε ∼ (−1)n enA/ε(sgn(X0) e|X0|/ε − e(B−A)/ε)

and finally

Xn = (−1)ns(nA + max(|X0|, B − A)) (2.11)

where s = sgn(X0) if |X0| > B − A or s = −1 if |X0| < B − A,
while for A < 0, eXn/ε − e−Xn/ε ∼ eB/ε + (−1)n sgn(X0) e(nA+|X0|)/ε and finally

Xn = s max(B, nA + |X0|, 0) (2.12)
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where s = 1 if B or 0 are maximal and s = (−1)n sgn(X0) if nA + |X0| is maximal.
If n < 0, we can follow the same steps and obtain:

if A � 0:

Xn = s max(B − A, nA + |X0|, 0) (2.13)

where s = 1 if B − A or 0 are maximal and s = (−1)n sgn(X0) if nA + |X0| is maximal.
Similarly, for A < 0, we find

Xn = (−1)ns(nA + max(|X0|, B)) (2.14)

where s = sgn(X0) if |X0| > B or s = −1 if |X0| < B.
This completes the construction of the solution of the s-ultradiscrete linear mapping. It

is to be noted that other expressions should be introduced for specific initial values such as
X0 = B − A for A > 0 and n > 0.

However, casting the s-ultradiscrete equation in the form of a max–equal–max mapping
(2.8) (which is admittedly a little awkward to work with) is not something unavoidable in this
case. Indeed, once we have equation (2.7), we can obtain an explicit equation for Xn+1 using
identity (1.8). We find

Xn+1 = σ max(A + Xn,A − Xn,B, 0) (2.15)

where σ = −1 if all three conditions Xn > 0, Xn + A > 0 and Xn + A − B > 0 are satisfied,
otherwise we have σ = 1. We note that (2.15) is valid unless Xn falls in 0 or B − A for
some n. At any rate, the Xn+1 computed from (2.15) satisfies identically the max–equal–max
equation (2.8).

3. The homographic mapping

The next system we shall examine is again first-order albeit a very special one, the homographic
mapping. Among all its possible forms, we choose a simple one

xn+1 = a +
b

xn

(3.1)

where a, b are positive constants.
The e-ultradiscretization of this system is straightforward. Putting x = eX/ε, a =

eA/ε, b = eB/ε we obtain, at ε → 0 the mapping

Xn+1 = max(A,B − Xn). (3.2)

The discrete system (3.1) is linearizable through a Cole–Hopf transformation. Indeed, putting

xn = qn+1

qn

(3.3)

we obtain for q the linear, second-order, mapping

qn+1 = aqn + bqn−1. (3.4)

The ultradiscrete version of this transformation is simply (q = eQ/ε)

Xn = Qn+1 − Qn (3.5)

and the equation for Q becomes

Qn+1 = max(A + Qn,B + Qn−1). (3.6)

Using Q defined by the latter, it is elementary to show that X, computed from (3.5), does
indeed satisfy the ultradiscrete equation (3.2).
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We turn now to the s-ultradiscretization of the homographic mapping and, as in
section 2, we introduce an explicit minus sign

xn+1 = a − b

xn

(3.7)

where a, b are again positive constants. A more convenient form of (3.7) is the following:

xn+1xn − (λ + µ)xn + λµ = 0 (3.8)

where λ,µ are real and positive. The solution of (3.8) obtained through the Cole–Hopf
transformation is

xn = λn+1 + cµn+1

λn + cµn
(3.9)

(corresponding to qn = λn + cµn) where c is an integration constant.
In order to s-ultradiscretize the mapping (3.8), we introduce λ = e�/ε, µ = eM/ε (where

without loss of generality we can assume � > M) and x = eX/ε − e−X/ε . At the limit ε → 0,
we obtain the equation

max(|Xn+1 + Xn|,� − Xn,M − Xn,� + M) = max(|Xn+1 − Xn|,� + Xn,M + Xn).

(3.10)

The Cole–Hopf transformation qn+1 = xnqn becomes (q = eQ/ε − e−Q/ε)

max(Qn+1, |Xn − Qn|) = max(−Qn+1, |Xn + Qn|) (3.11)

while the equation satisfied by Q is

max(Qn+1,� − Qn,M − Qn,� + M + Qn−1)

= max(−Qn+1,� + Qn,M + Qn,� + M − Qn−1). (3.12)

Since the last two equations are implicit, it does not seem possible to verify formally that
they give indeed only the solution of (3.10). Still, using the explicit solution (3.9) for x (and
for q), one can show that these equations are indeed satisfied. We start by computing the
s-ultradiscrete limit of (3.9). Putting c = eC/ε − e−C/ε , we have

eX/ε − e−X/ε = e�/ε 1 + (eC/ε − e−C/ε) e(M−�)(n+1)/ε

1 + (eC/ε − e−C/ε) e(M−�)n/ε
. (3.13)

Since we will be looking for the dominant part of the rhs, we can rewrite (3.13) keeping only
the dominant contribution of C

eX/ε − e−X/ε ∼ e�/ε 1 + sgn(C) e|C|/ε+(M−�)(n+1)/ε

1 + sgn(C) e|C|/ε+(M−�)n/ε
. (3.14)

It is now straightforward to follow the dominant contributions and write the solution.
If |C| > (� − M)(n + 1) the second terms in numerator and denominator are dominant.

Keeping only these terms, we find for the rhs the result eM/ε and thus the solution is

Xn = max(M, 0) for |C| > (� − M)(n + 1). (3.15a)

In contrast, if |C| < (�−M)n the first term is dominant resulting to e�/ε as only contribution.
We have thus

Xn = max(�, 0) for |C| < (� − M)n. (3.15b)

Finally, when (� − M)(n + 1) > |C| > (� − M)n, the dominant contribution that comes
from the combination of numerator and denominator is sgn(C) e�/ε−|C|/ε−(M−�)n/ε . We find
that the solution is

Xn =
{

sgn(C)(� − |C| + (� − M)n), if |C| − � < (� − M)n

0, otherwise

for (� − M)(n + 1) > |C| > (� − M)n. (3.15c)
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It is noted that other expressions should again be introduced for specific initial values. For the
quantity Q we have similarly

eQ/ε − e−Q/ε ∼ e�n/ε + sgn(C) e|C|/ε+Mn/ε. (3.16)

At the limit ε → 0 and applying the indentity (1.7) we find

Qn = σ max(�n,Mn + |C|, 0) (3.17)

where

σ =
{

sgn(C), if |C| > (� − M)n

1, otherwise.

It is easy to show that Q given from (3.17) does indeed satisfy (3.12) and similarly X and Q do
satisfy the Cole–Hopf relation (3.11). Thus, the s-ultradiscretization does preserve the basic
properties of the homographic mapping.

4. Ultradiscretization of discrete Painlevé equations and their solutions

In this section, we shall investigate the s-ultradiscrete forms of q-discrete Painlevé equations
and of their solutions. The q-discrete Painlevé equations are nonautonomous mappings in
which the independent variable appears in exponential form zn = z0λ

n. For ultradiscretization,
we introduce the ansatz λ = e1/ε , and together with the choice z0 = 1 we have zn = en/ε . (A
more precise ansatz would have been λ = e�/ε, z0 = eK/ε , leading to zn = e(�n+K)/ε , but this
does not alter the argument presented below).

4.1. Rational solutions of q-PII

Here we shall examine the rational solutions of the q-PII

xn+1xn−1 = znxn + a

σxn + zn

(4.1)

where σ 2 = 1. We start by taking σ = +1 in which case (4.1) can be e-ultradiscretized [10].
Putting x = eX/ε, zn = en/ε, a = eA/ε we find

Xn+1 + Xn−1 = max(Xn + n,A) − max(Xn, n). (4.2)

Equation (4.1) possesses rational solutions for special values of the parameter a. We have
indeed x = 1 for a = 1, x = (z + λ3(1 + λ + λ2))/(z + λ(1 + λ + λ2)) for a = λ6 and higher
solutions can be constructed for a = λ6m for integer m. The e-ultradiscrete form
of these rational solutions can be easily constructed, either ultradiscretising the discrete
solutions or working directly with (4.2). We find that the simplest solution is X = 0
for A = 0. The next solutions (easily verified) are (. . . , 2, 2, 1, 0, 0, . . .) for A =
6, (. . . , 4, 4, 3, 2, 2, 2, 1, 0, 0, . . .) for A = 12, (. . . , 6, 6, 5, 4, 4, 4, 3, 2, 2, 2, 1, 0, 0, . . .) for
A = 18, and so on. In general, for A = 6m we have a solution which goes from a constant
value 2m for n → −∞ to 0 for n → +∞, with 2m intermediate down-steps.

We turn now to the case σ = −1. This q-PII has rational solutions, which present
poles and zeros (except for the solution x = 1 obtained for a = −1). We have, for
instance, x = (z − λ3(1 + λ + λ2))/(z − λ(1 + λ + λ2)) for a = −λ6. In order to s-
ultradiscretize the σ = −1 q-PII, we multiply out all denominators, introduce the ansatz
x = eX/ε − e−X/ε, zn = en/ε, a = eA/ε − e−A/ε and find

(eXn+1/ε − e−Xn+1/ε)(eXn−1/ε − e−Xn−1/ε)(−eXn/ε + e−Xn/ε + en/ε)

= en/ε(eXn/ε − e−Xn/ε) + eA/ε − e−A/ε. (4.3)
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This leads, at ε → 0, to the following ultradiscrete equation:

max(|Xn+1 + Xn−1| + max(n,−Xn), |Xn+1 − Xn−1| + Xn, n − Xn,−A)

= max(|Xn+1 + Xn−1| + Xn, |Xn+1 − Xn−1| + max(n,−Xn), n + Xn,A). (4.4)

The first interesting solution of ‘rational’ type turns out to be (. . . , 2, 2,−1, 0, 0, . . .)

for A = −6. However, a closer inspection yields another solution of the same type
(. . . , 2,−2,−1, 0, 0, . . .) for the same value of A. The origin of these solutions is easy
to understand, provided we use the more detailed ansatz zn = e(n+K)/ε (with 1 > K > 0) for
the independent variable. In this case, the ultradiscretization of the simple rational solution
leads to two negative values: −1 − K,−K . Thus, if one insists on a zn of the form λn there
exist two possibilities: either K → 0+ or K → 1−. In the first case, the negative values are
(−1, 0), while in the second we have (−2,−1), which explains the two possibilities found
above.

Similarly, for the higher solutions, we have two possibilities. For A = 12 we find
the solutions (. . . , 4,−4,−3, 2, 2,−2,−1, 0, 0, . . .) or (. . . , 4, 4,−3,−2, 2, 2,−1,

0, 0, . . .). Similarly, for A = 18, there exist two possible solutions (. . . , 6,−6,−5, 4, 4,−4,

−3, 2, 2,−2,−1, 0, 0, . . .) and (. . . , 6, 6,−5,−4, 4, 4,−3,−2, 2, 2,−1, 0, 0, . . .) and so on
for higher A’s.

Thus, at the s-ultradiscrete limit the zeros and poles of the discrete solution are manifesting
themselves through the sign changes of the solution.

4.2. Solutions of q-PII in terms of the q-Airy function

In order to investigate the solutions of q-PII which involve the discrete logarithmic derivative
of the q-Airy function we consider the q-PII

xn+1xn−1 = znxn − 1

xn(azn − xn)
. (4.5)

We seek a solution of (4.5) through linearization, using the methods developed in [11]. We
find that when a = 1/λ there exists a solution given by the homographic mapping

xn+1 = znxn − 1

xn

(4.6)

which can be linearized through the Cole–Hopf transformation xn = qn/qn−1. We obtain thus
for q one of the forms of the q-Airy equation,

qn+1 − znqn + qn−1 = 0. (4.7)

We proceed now to the s-ultradiscretization of the q-PII and its solution. Putting x =
eX/ε − e−X/ε, zn = en/ε, a = eA/ε − e−A/ε we find, at the limit ε → 0, the ultradiscrete
equation,

max(|Xn+1 + Xn + Xn−1 + A|, |Xn+1 − Xn + Xn−1 − A|, | − Xn+1 + Xn + Xn−1 − A|,
|Xn+1 + Xn − Xn−1 − A|, |Xn+1 − 2Xn − Xn−1| − n, |Xn+1 + 2Xn − Xn−1| − n,

|Xn+1 + Xn−1| − n,−Xn) = max(|Xn+1 + Xn + Xn−1 − A|, |Xn+1 − Xn + Xn−1

+ A|, | − Xn+1 + Xn + Xn−1 + A|,
|Xn+1 + Xn − Xn−1 + A|, |Xn+1 − 2Xn + Xn−1| − n, |Xn+1 + 2Xn + Xn−1| − n,

|Xn+1 − Xn−1| − n,Xn). (4.8)

Similarly, the q-Airy equation can be ultradiscretized, by q = eQ/ε − e−Q/ε leading to

max(Qn+1, n − Qn,Qn−1) = max(−Qn+1, n + Qn,−Qn−1). (4.9)
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We start by constructing the solution of s-ultradiscrete Airy equation (4.9). For large positive
n, the dominant term on the rhs is Qn + n and the equation reduces to Qn+1 = Qn + n,
with solution Qn = n(n − 1)/2 + c. For large negative n on the other hand, we obtain the
equation Qn+1 + Qn−1 = 0. Its solution has a period-4 involving two arbitrary constants
Qn = αin + α∗(−i)n and is better given in the form (. . . , a, b,−a,−b, a, b, . . .). It remains
now to match the two solutions. This depends on the values of a and b. For negative n, we find
(. . . , 0, 1, 0,−1, 0, 1, . . .). The sequence breaks down at Q1 = 1 (instead of Q1 = −a = 0)
and matching the solutions for positive n we obtain c = 1.

The Cole–Hopf relation leads to the s-ultradiscrete equation,

max(Qn, |Xn − Qn−1|) = max(−Qn, |Xn + Qn−1|). (4.10)

We can now construct the solution for X, since Q is known. For negative n, assuming
a > b > 0, we obtain the sequence (. . . , 0, b − a, 0, b − a, 0, b − a, . . .), while if b > a > 0
we find (. . . , b − a, 0, b − a, 0, b − a, 0, . . .), i.e. the same formal solution. We must point
out here that while the solution for Q involved two arbitrary constants, only one combination
survives in X, as expected. For positive n given that Q is large and positive, the equation
reduces to Xn = Qn − Qn−1 leading to Xn = n − 1. Thus, the s-ultradiscrete form of the
Airy-type solution of q-PII is a saw-tooth function on the left matched to a linear one on the
right.

This solution can be directly obtained from the s-ultradiscrete form of the homographic
mapping (4.6)

max(|Xn+1 + Xn|, n − Xn) = max(|Xn+1 − Xn|, n + Xn). (4.11)

For large negative n, the equation is just |Xn+1 + Xn| = |Xn+1 − Xn| leading to a period-2
X alternating between a finite value and zero, while for positive n the equation reduces
|Xn+1 + Xn| = Xn + n and finally Xn+1 = n. In the specific example of a = 0, b = 1 we
have given above, the solution is (. . . , 1, 0, 1, 0, 1, . . .) for negative n,X0 = 1, matched to
Xn = n − 1 for positive n.

Thus, with this procedure, we can construct an s-ultradiscrete analogue to a q-Painlevé
equation and obtain its solution in terms of the s-ultradiscrete analogue of a special function.

5. Conclusion

Why is ultradiscretization important? The main answer is that it is the only systematic
method which can produce a cellular-automaton analogue of a given equation while preserving
its fundamental properties and in particular integrability. The procedure entails several
constraints. First, we can only apply it to a discrete equation. Thus, if we wish to find
the cellular-automaton analogue of a given evolution equation, we must first construct its
discrete form. Of course, this is not a serious constraint: discrete systems are the most
fundamental entities and a decade of intense activity has produced the discrete analogues
of most well-known soliton equations. The second requirement of the ultradiscretization
procedure, as first introduced, is that all quantities be positive definite. The aim of the present
work is precisely to introduce a new procedure, which does not rely on positivity. The third
constraint has to do with nonautonomous systems. Since the ultradiscretization consists in
taking a limit where, schematically, the variables are replaced by their logarithms, for the
independent variable to survive ultradiscretization it must be exponential. We are limited thus
to q-type equations. However, this is not a serious constraint either since, as our studies on
discrete Painlevé equations have shown, q forms exist along all the difference forms and are
in some sense more fundamental.
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In this paper, we have introduced an ultradiscretization ansatz involving the hyperbolic
sine which does away with positivity requirements. This extra freedom comes of course at
some price. As we explained in the introduction, when the dominant contribution happens
to vanish, the result is indeterminate and its determination would have required a more
precise knowledge of the solution of the underlying discrete system. Moreover, the resulting
equations are usually in the form of max–equal–max equations which, being implicit, are not
very convenient for the evolution.

In this study, we have limited ourselves to simple one-dimensional mappings. For the
linear and homographic mappings, we have obtained their ultradiscrete forms and their explicit
solutions. In the case of discrete Painlevé equations, we have studied two particular forms of
q-PII. For the first, we have given the ultradiscrete form of the rational solution which presents
zeros and poles: the traces of the latter are present through sign changes in the ultradiscrete
solution. Still more interesting is the result obtained for the second q-PII. We have obtained
the s-ultradiscrete form of the particular solution involving the q-Airy function (something
impossible with the previous ultradiscretization procedure). It would be interesting to extend
the s-ultradiscretization approach to the other q-Painlevé equations in order to study their
special solutions in terms of special functions of the q-hypergeometric family.

References

[1] Tokihiro T, Takahashi D, Matsukidaira J and Satsuma J 1996 Phys. Rev. Lett. 76 3247–50
[2] Ramani A, Grammaticos B and Satsuma J 1992 Phys. Lett. A 169 323–8
[3] Isojima S, Murata M, Nobe A and Satsuma J 2004 Phys. Lett. A 331 378–86
[4] Matsukidaira J, Satsuma J, Takahashi D, Tokihiro T and Torii M 1997 Phys. Lett. A 225 287–95
[5] Takahashi D and Matsukidaira J 1997 J. Phys. A: Math. Gen. 30 L733–9
[6] Matsukidaira J and Nishinari K 2003 Phys. Rev. Lett. 90 088701
[7] Willox R, Grammaticos B, Carstea A S and Ramani A 2003 Physica A 328 13–22
[8] Murata M, Isojima S, Nobe A and Satsuma J 2006 J. Phys. A: Math. Gen. 39 L27–34
[9] Isojima S, Murata M, Nobe A and Satsuma J Phys. Lett. A submitted

[10] Grammaticos B, Ohta Y, Ramani A, Takahashi D and Tamizhmani K M 1997 Phys. Lett. A 226 53–8
[11] Grammaticos B, Nijhoff F W, Papageorgiou V and Ramani A 1994 J. Satsuma, Phys. Lett. A 185 446

http://dx.doi.org/10.1103/PhysRevLett.76.3247
http://dx.doi.org/10.1016/0375-9601(92)90235-E
http://dx.doi.org/10.1016/j.physleta.2004.09.023
http://dx.doi.org/10.1016/S0375-9601(96)00899-7
http://dx.doi.org/10.1088/0305-4470/30/21/005
http://dx.doi.org/10.1103/PhysRevLett.90.088701
http://dx.doi.org/10.1016/S0378-4371(03)00552-1
http://dx.doi.org/10.1088/0305-4470/39/1/L04
http://dx.doi.org/10.1016/S0375-9601(96)00934-6
http://dx.doi.org/10.1016/0375-9601(94)91124-X

	1. Introduction
	2. The linear mapping
	3. The homographic mapping
	4. Ultradiscretization of discrete Painlevé equations and their solutions
	4.1. The
	4.2. The

	5. Conclusion
	References

